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Plasmon localization and local field distribution in metal-dielectric films

Dentcho A. Genov, Andrey K. Sarychev, and Vladimir M. Shalaev
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285

~Received 12 October 2002; published 15 May 2003!

An exact and very efficient numerical method for calculating the effective conductivity and local-field
distributions in randomR-L-C networks is developed. Using this method, the local-field properties of random
metal-dielectric films are investigated in a wide spectral range and for a variety of metal concentrationsp. It is
shown that for metal concentrations close to the percolation threshold (p5pc) and frequencies close to the
resonance, the local-field intensity is characterized by a non-Gaussian, exponentially broad distribution. For
low and high metal concentrations a scaling region is formed that is due to the increasing number of nonin-
teracting dipoles. The local electric fields are studied in terms of characteristic length parameters. The roles of
both localized and extended eigenmodes in Kirchhoff’s Hamiltonian are investigated.
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I. INTRODUCTION

The last two decades were a time of immense impro
ment in our understanding of the optical properties of inh
mogeneous media@1#. One of the important representative
of such media is a metal-dielectric composite near the p
colation threshold. Such nanostructured composite mate
are of significant interest because they can lead to dram
enhancement of optical responses in a broad spectral ra
including the visible and infrared parts of the spectrum.
particular, percolation metal-dielectric films can be employ
for surface-enhanced spectroscopy with unsurpassed s
tivity and for developing optical elements, such as opti
switches and efficient optical filters, with transparency w
dows that can be induced by local photomodification in
composite films.

In the optical and infrared spectral ranges, the metal
electric permittivity has, typically, a negative real part,
that metal particles can be viewed as inductance elem
with small losses (R-L elements!. In accordance with this
assumption, a metal-dielectric composite can be treated a
R-L-C network, where theC elements stand for dielectri
grains, which have a positive dielectric permittivity. Man
different approaches based on effective-medium theories
various numerical models have been suggested to des
the optical nonlinearities of such systems@2#. In particular, a
number of numerical simulations have been carried out
using the real space renormalization group@3–8#. A recently
developed scaling theory@4–8# for the field fluctuations and
high-order field moments predicts localization of the surfa
plasmons in percolation composites and strong enhance
for the local field, resulting from the localization. Exper
mental observations@7,9# in accord with the theoretical pre
dictions show the existence of giant local fields, which c
be enhanced by a factor of 105 for the linear response an
1020 and greater for the nonlinear response. A recent st
@10# of the plasmon modes in metal-dielectric films giv
more insights into the problem. Thus, in Ref.@10# it was
found that for all systems studied the local fields are conc
trated in nanometer sized areas, while some of the eig
states are not localized.

Despite the progress, computer modeling of the elec
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field distribution in metal-dielectric nanocomposites h
been restricted so far to mainly approximate methods, s
as the real space renormalization group~RSRG!. To some
extent, this was justified since the focus of those calculati
was on the effective properties, such as the macroscopic
ductivity and dielectric permittivity. Many fast algorithm
were suggested for determining the effective conductiviti
these include very efficient models, such as the Frank
Lobb Y-¹ transformation@11#, the exact numerical renor
malization in a vicinity of the percolation threshold@12–14#,
and the transfer matrix method@15#. Unfortunately, none of
these methods can be used for precise calculation of
local-field distribution and a different approach is need
The relaxation method~RM! was one of the first algorithms
to give some insight into the field distributions@16#. This
method has the advantage of using the minimum poss
memory, which is proportional to the number of sitesLd,
whereL is the size of the system andd is the space dimen
sionality. Fast Fourier acceleration@17# allows one to speed
up the convergency of the iteration process for both tw
~2D! and three-dimensional~3D! percolation systems. How
ever, the ‘‘critical slowing down’’ effect and the problem o
stability ~occurring when the imaginary part of the local co
ductivity takes both positive and negative values! restrict the
use of this approach. Thus, the local-field statistics for p
colation composites in the optical and infrared spec
ranges was not investigated until very recently, with dire
numerical methods that do not involve anya priori assump-
tions. In their work, Zekri, Bouamrane, and Zekri@18# sug-
gested a substitution method, which allows one to calcu
the local-field distributions in percolation metal-dielectr
composites in the optical range. However, results obtai
for the local-field intensity distribution functionP(I ) ~where
I 5uEu2) appear to be rather surprising. Specifically, inste
of the theoretically predicted and experimentally observ
enhancement for the local field, the authors of Ref.@18# ob-
tained strong dissipation, so that the average field inten
was even lower than the applied one. This contradiction w
the previous results for the local-field distribution and t
necessity for a more accurate method was one of the m
vations for this work. We note that the high local fields pl
a crucial role in enhancement for nonlinear optical effe
©2003 The American Physical Society11-1
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and thus it is important to verify this prediction by exa
calculations.

In this paper we suggest a direct numerical method, wh
we refer to as block elimination~BE!. The BE method allows
calculations of effective parameters~such as the conductiv
ity, dielectric permittivity, etc.! and, most importantly, the
local-field distribution in inhomogeneous media. In this wo
we focus our attention on the local-field distributionP(I )
and compare results obtained by BE with those follow
from the RSRG, the relaxation method, and the Zek
Bouamrane-Zekri~ZBZ! method. Specifically, we investigat
the properties of two-dimensional random metal-dielec
composites by modeling them as a square lattice with
lattice sizeL comprised of dielectric and metal bonds, wi
conductivitiessd andsm , respectively. The probability of a
bond to have metallic conductivity isp ~wherep is the metal
concentration! and the probability of dielectric conductivit
is 12p. In agreement with earlier theoretical predictions a
experimental observations@4–9#, we obtain a ‘‘topology’’ of
the local electric field characterized by sharp peaks that
exceed the applied field by several orders of magnitude.
field maxima are due to the effect of localization of the s
face plasmon modes in random films@7#. A full set of field
distribution functionsP(I ) that gradually transform from
‘‘one-dipole’’ field distribution to log-normal distribution are
calculated by using the BE method.

The rest of this paper is organized as follows. In Sec.
we describe the block elimination procedure and some b
equations describing metal-dielectric composites. In Sec.
we examine the accuracy of this method by calculating
critical behavior and the effective conductivities for som
important cases. In Sec. IV, we study the local-field distrib
tion P(I ) for different metal concentrationsp and conduc-
tivities sm . In Sec. V, using an approach based on the
verse participation ratio, we find important relations for t
field correlation lengthje , average field localization lengt
j f , and average distance between metal particlesja . The
eigenvalue problem is solved here and effects due to
existence of extended states are investigated. Finally, in
VI we discuss the results obtained and draw conclusions

II. BLOCK ELIMINATION METHOD

We consider the problem of a local-field distribution
nanoscale metal-dielectric films at and away from the per
lation threshold, in the case when the wavelengthl of an
incident light is much larger than the metal grain sizea.
Under this condition, we can introduce the local poten
w(r ) and local currentj (r )5s(r )•@2“w(r )1E0#, where
E0 is the applied field ands(r ) is the local conductivity. In
the quasistatic case considered, the problem of the pote
distribution is reduced to the solution of the current cons
vation law“• j (r )50, which leads to the Laplace equatio
“•$s(r )•@2“w(r )1E0#%50 for determining the poten
tials. Now we discretize the above relation on a square lat
so that the film, which is a binary composite of metal a
dielectric particles, can be represented through metal and
electric bonds connecting the lattice sites. Under such
05661
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cretization the current conservation for lattice sitei acquires
the following form:

(
j

s i j ~w i2w j1Ei j !50, ~1!

where w i is the field potential of sitei. The summation is
over the nearest~to i ) neighbor sitesj ; s i j 5s j i are the
conductivities of bonds that connect neighbor sitesi and j
and Ei j are the electromotive forces. The electromoti
forcesEi j are defined so thatEi j 5aE0, for the bond leaving
site i in the 1y direction, andEi j 52aE0, for the bond in
the 2y direction;Ei j is zero for thex bonds. Note thatEi j
52Eji .

Numerical solutions of the Kirchhoff equation~1! in the
case of large lattice sizes encounter immense difficulties
require very large memory storage and high operatio
speed. A full set of the Kirchhoff equations for a squa
lattice with sizeL is comprised ofL2 separate equations
This system of equations can be written in the matrix for

Ĥ•F5F, ~2!

whereĤ is a symmetricL23L2 matrix that depends on th
structure and composition of the lattice,F5$w i%, and F5
$2( js i j Ei j % are vectors of sizeL2, which represent the po
tential and applied field at each site and bond. In the lite
ture, the matrixĤ is called the Kirchhoff Hamiltonian~KH!
and it is shown to be similar to the Hamiltonian for th
Anderson transition problem in quantum mechanics@5,7–9#.
The Kirchhoff Hamiltonian is a sparse random matrix wi
diagonal elementsHii 5( js i j ~where the summation is ove
all bond conductivitiess i j that connect thei th site with its
neighbors! and nonzero off-diagonal elementsHi j 52s i j .
For a detailed description of the KH, see the Appendix.

In principle, Eq.~2! can be solved directly by applying th
standard Gaussian elimination to the matrixĤ @19#. This
procedure has a run time proportional to;L6 and requires a
memory space of the order ofL4. Simple estimations show
that direct Gaussian elimination cannot be applied for la
lattice sizes,L.40, because of the memory restrictions a
long run times for all contemporary personal computers. F
tunately, the KH matrixĤ has a simple symmetrical structur
that allows implementation of the block elimination proc
dure which can significantly reduce the operational time a
memory.

In calculations, we can apply the periodic boundary co
ditions for thex andy directions; alternatively, we can als
impose parallel orL-electrode-type boundaries. In the case
the periodic boundary conditions, we suppose that the s
in the first row of theL3L lattice are connected to theLth
row, whereas the sites of the first column are connected
the last column. Then the Kirchhoff equations for the fi
site in the first row, for example, have the following form

s1,L~w12wL!1s1,2~w12w2!1s1,L22L11~w12wL22L11

2aE0!1s1,L11~w12wL111aE0!50, ~3!
1-2
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where s1,L is the conductivity of the bond connecting th
first and the last sites in the first row. Thes1,2 conductivity
connects the first and second sites in the first row,s1,L22L11
connects the first site of the first row and the first site of
Lth row, s1,L11 connects the first sites of the first and t
second rows, and the external fieldE0 is applied in the1y
direction. Note that thes1,L ands1,L22L11 connections are
due to the periodic boundary conditions in thex andy direc-
tions, respectively.

In Eq. ~3! we numerate the sites of theL3L lattice ‘‘row
by row,’’ from 1 ~for the first site in the first row! to L2 ~for
the last site in theLth row!. Under this labeling the KH
matrix Ĥ acquires a block-type structure. As an example,
a system with sizeL55, the matrixĤ takes the following
block form:

Ĥ5S h(11) h(12) 0 0 h(15)

h(21) h(22) h(23) 0 0

0 h(32) h(33) h(34) 0

0 0 h(43) h(44) h(45)

h(51) 0 0 h(54) h(55)

D , ~4!

whereh( j j ) are L3L matrices with diagonal elementshii
( j j )

5(ks i 1( j 21)L,k @the summation is over the nearest neig
bors of the sitei 1( j 21)L, which are located in thej th row,
1< i<L], while the diagonal matricesh(kl)5h( lk)(k5” l )
connect thekth row with the l th row, and vice versa. The
matrices in the right upper and in the left bottom corners
the KH matrix Ĥ are due to the periodical boundary cond
tions: they connect the top and the bottom rows and the
and the last columns. The explicit forms for the matricesh( j j )

andh(kl) are given in the Appendix.
For large sizesL, the majority of the blockh( i j ) are zero

matrices and applying Gaussian elimination will be a ve
inefficient way to solve the system Eq.~2!. In fact, in a
process of elimination of all block elements belowh(11) in
the matrix Eq.~4!, the only matrix elements that will chang
are h(11), h(12), h(22), h(15), and h(55), with two more ele-
ments appearing in the second and last rows. Thus, to e
nate the first block column of the KH we can instead ofĤ
work with the following 3L33L block matrix:

ĥ(1)5S h(11) h(12) h(15)

h(21) h(22) 0

h(51) 0 h(55)
D , ~5!

recall that in the considered example we choose, for simp
ity, L55.

Now to eliminate all elements below the diagonal in t
first block column of matrixĥ(1) we apply a standard proce
dure @19#, whereby, using the diagonal elements of blo
matrix h(11) as pivots, we transformh(11) into a triangle ma-
trix h* (11) and simultaneously eliminateh(21) andh(51). The
elimination of the first column ofĥ(1)and correspondinglyĤ
thus requires onlyL3 simple arithmetical operations which
to be compared withL5 operations needed if we work d
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rectly with the whole matrixĤ. After the first step of this
block elimination is completed the matrixĤ has the follow-
ing form:

Ĥ(1)5S h* (11) h* (12) 0 0 h* (15)

0 h* (22) h(23) 0 h(25)

0 h(32) h(33) h(34) 0

0 0 h(43) h(44) h(45)

0 h(52) 0 h(54) h* (55)

D , ~6!

where by the asterisk superscript we denote all blocks
have changed in the elimination process. The two new bl
elementsh(25) and h(52) appeared due to the interactions
the first row with the second and the fifth rows.

As a second step, we apply the above procedure for
minor Ĥ11

(1) of the matrixĤ(1) ~which now plays the role of

Ĥ); therefore we work again with a 3L33L matrix:

ĥ(2)5S h* (22) h(23) h(25)

h(32) h(33) 0

h(52) 0 h* (55)
D . ~7!

Repeating withĥ(2) all operations we performed onĥ(1), we
put h* (22) in the triangle form and eliminateh(32) andh(52).
We continue this procedure until the whole matrixĤ is con-
verted into the triangular form with all elements below t
diagonal being zero. The backward substitution for a tria
gular matrix is straightforward; namely, we obtain first th
site potentials in theLth row ~the fifth row, in our example!
and then, by calculating the potentials, in the (L21)th row,
and so on, until the potentials in all rows are obtained. T
total number of operations needed is estimated as;L4, for
the described block elimination method, which is less th
the numberL6 needed for Gaussian orLU ~for symmetric
matrixes! elimination @19#. The BE has operational speed
the same order of magnitude as in the transfer-matrix met
@15# and the Zekri-Bouamrane-Zekri method@18#. However,
BE allows the calculation of the local fields, as opposed
the Frank-Lobb method, and we believe that it is much ea
in numerical coding when compared to the ZBZ method.

For each step of the BE procedure, we need to keep o
L2 ~the matrix ĥ(k)) complex numbers in the operation
memory andL3 on a hard disk. By using the hard drive w
do not significantly decrease the speed performance bec
only L loadings ofL2 numbers are required, i.e.,L3 addi-
tional operations in total. Note that the BE, like to the Gau
ian elimination, is well suited for parallel computing.

We performed various tests to check the accuracy of
BE algorithm described above. First, the sum of the curre
in each site was calculated and the average value;10214

was found; this is low enough to claim that current cons
vation holds in the method. Our calculations, using the st
dard Gaussian elimination~for small lattice sizes! and the
relaxation method~for the case of all positive conductivi
1-3
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ties!, for the effective conductivity and the local-field distr
bution show full agreement with results obtained using
block elimination procedure developed.

III. RESULTS FOR 2D PARALLEL AND L-TYPE
LATTICES

In inhomogeneous media, such as metal-dielectric co
posites, both the dielectric permittivity«(r ) and conductivity
s(r )52 iv«(r )/4p depend on the positionr . When the size
of the composite is much larger than the size of inhomo
neities, the effective conductivityse can be introduced. As
discussed above, we model the composite by anR-L-C
square lattice and then apply the BE method to find the fi
potentials in all sites of the lattice. When the potential dis
bution is known we can calculate the effective conductivi

seuE0u25
1

SE s~r !uE~r …u2dr , ~8!

whereE„r … and E0 are the local and applied fields, respe
tively ~see, e.g.,@2#!.

It is well known that the effective dc conductivity for
two-component random mixture (sm@sd) should vanish as
a power law, when the metal concentrationp approaches the
percolation thresholdpc , i.e.,

se;sm~p2pc!
t, ~9!

where t is the critical exponent, which has been calcula
and measured by many authors. In the 2D case, the cri
exponent is given byt51.2860.03, according to Derrida
and Vannimenus@15#, andt51.2960.02, according to Frank
and Lobb@11#. The valuet51.3360.03 was found by Sary
chev and Vinogradov@13#, who used the exact renormaliza
tion group procedure and reached the lattice sizeL5500 in
their simulations. In all cases, the critical exponentt was
calculated using finite-size scaling theory@20#. When the
volume fractionp of the conducting elements reaches t
percolation thresholdpc , the correlation length increases
j;(p2pc)

2n, wheren54/3 is the critical exponent for the
correlation length@2#. Because the correlation lengthj de-
termines the minimum size of the network, for which it c
be viewed as homogeneous, one expects that forL!j the
effective conductivity depends on the system sizeL. The
finite-size scaling theory@20–23# predicts the following de-
pendence:

se~L !;L2t/n f ~h!, ~10!

where the argumenth5L1/n(p2pc) depends on the system
sizeL and on the proximity to the percolation thresholdpc .
For a self-dual lattice, such as the square lattice consid
here, the percolation threshold is known exactly:pc50.5.
When calculations are carried out forp5pc there is no need
for knowledge of the specific form of the functionf in Eq.
~10!.

We calculate the effective conductivityse(L) for differ-
ent sizesL. In order to improve the statistics for each sizeL,
a number of distinct realizations were performed. Spec
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cally we used 40 000 realizations forL510;5000 realiza-
tions for L520;1000 realizations forL560; and 100 real-
izations for L5150. The data from our calculations we
fitted to Eq.~10! and x2 analysis was applied to determin
the critical exponents. Thus we found thatt/n50.9660.03
andt51.2860.04. This result is in good agreement with th
estimates of Derrida and Vannimenus and Frank and Lo
but somewhat lower than thet/n51.0 obtained by Sarychev
and Vinogradov. Note that the valuet/n51.0 is expected for
sizesL.300 that are greater than those we used in our e
mates.

IV. LOCAL-FIELD DISTRIBUTION FUNCTION

To further verify the accuracy of the block eliminatio
method, we explicitly tested the field distribution functio
for the case when the conductivities are positive and r
numbers~i.e., the dielectric permittivity is purely imaginar
in this case!. The local-field distribution function~LFDF! we
sampled in terms of log10(I ), where I 5(uEÀE0z/uE0u)2 is
the local-field intensity fluctuation withuE0u2 being the in-
tensity of the applied field. If the bond conductivitiessd and
sm are positive, we can also apply the relaxation meth
@17# and compare the results with those obtained with the
procedure. Such a comparison is presented in Fig. 1, wh
we can see that both distributions are nearly the same,
only minor deviations due to the differences in the calcu
tion procedures resulting in different round-off errors, a
also due to nonsufficient relaxation times. In the same figu
the local-field distribution obtained with the real space ren
malization group method is also shown. It exhibits an e
tended tail toward small values of the intensityI, a fact that
is observed for all distributions calculated with this metho

Although the case of real positive values for the cond
tivities is of considerable interest, more important physi
problems arises when the metal conductivity is compl
One special case corresponds to the surface plasmon

FIG. 1. The local-field distributionP(I ) calculated with two
exact methods, the relaxation method~RM! and block elimination
~BE!. Results of calculations with the approximate, real spa
renormalization group~RSRG! are also shown. The ratio of th
~real! conductivities for metal and dielectric bonds is chosen
sm /sd5103.
1-4
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nance, which plays a crucial role in the optical and infrar
spectral ranges for metal-dielectric composites. For the t
dimensional case, this resonance for individual particles
curs whensd'2sm , and it can be investigated using
dimensionless set of conductivitiessd52 i and sm5 i 1k,
wherei is the imaginary unit andk is a small real ‘‘conduc-
tivity’’ that corresponds to the losses in the system. Rec
that in metal-dielectric films the conductivitysm5
2 iv«m/4p is predominantly imaginary with a very sma
real part@22#. In Fig. 2, we show the local-field distribution
calculated for three different values ofk, using both the
block elimination and the real space renormalization gro
procedures. All functions obtained by these two methods
fer in shape and peak positions; however, taking into acco
that the RSRG is indeed an approximate procedure, we
conclude that qualitatively it performs rather well for hig
intensities. It is important to note that the local-field dist
bution is non-Gaussian and has a form close to the
normal function:

P~ I !5
1

DIA2p
expF2

@ log10~ I !2^ log10~ I !&#2

2D2 G , ~11!

where^ log10(I )& is the average value for the logarithm of th
local field intensityI andD is the standard deviation in term
of log10(I ). This approximation for the field distribution
seems to work sufficiently well around the average valus̄
5^ log10(I )&. We note, however, that according to Ref.@24#,
where the current distribution was studied, Eq.~11! probably
will fail for intensities I far from the logarithmic averages̄.
In Fig. 2 we can also see that^ log10(I )& andD both increase
whenk decreases.

Distributions similar in shape to those shown in Fig.
were obtained by Zekriet al., and discussed in@18,25#. It
was found that all distributions were shifted significantly t
ward smaller values ofI, which led the authors to the con
clusion that there is no strong enhancement for the lo
field. Such a conclusion contradicts earlier calculatio
@4–6,8#, experimental observations@7,9#, and the current

FIG. 2. Local-field distributionsP(I ) calculated for three differ-
ent loss factorsk50.1, 0.01, and 0.001, using the BE and RSR
methods. All distributions are obtained forp5pc .
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simulations based on the exact BE method. All these sim
lations and experiments indicate the existence of large lo
field enhancement in percolation metal-dielectric films
sulting from plasmon resonances.

In addition to the reference system withsd52 i andsm
5 i 1k, we also did LFDF calculations for a silver-on-gla
film using the Drude formula for the metal permittivity«m ,
given as

«m~v!5«b2~vp /v!2/~11 ivt /v!, ~12!

where«b is the contribution due to the interband transition
vp is the plasma frequency, andvt51/t!vp is the relax-
ation rate. For silver, we used the following constants:«b
55.0, vp59.1 eV, andvt50.021 eV @26#; for the glass
substrate, we used«d52.2.

In Fig. 3~a! we show the local-field distribution for two
different wavelengths: one corresponding to the resonanc
individual particles v5v r , occurring at sd'2sm (l
;370 nm) and another in the infrared part of the spectru
Again, we observe very wide distributions whose width i
creases with the wavelength and enhancement factors

FIG. 3. Local-field distributionsP(I ) for silver-glass films:~a!
for l5370 nm andl51 mm at p5pc ; ~b! for different metal
filling factors p at l5370 nm; the dashed line corresponds to t
analytically predicted single dipole distribution.
1-5
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reach values of the order of;105. We note that the log-
normal approximation Eq.~11! does not hold for frequencie
shifted away from the resonance. Changes in the shape o
LFDF are also observed when the surface metal cove
deviates from the percolation threshold value. This effec
shown in Fig. 3~b! where we have plotted the field distribu
tion for three different metal concentrationsp50.5, 0.01,
and 0.001 at the resonancel5370 nm. The case of a singl
metal bond~dipole! positioned at the center of the film i
also included. There is an apparent transition from the l
normal~for p5pc) LFDF into distributions that have ‘‘scal
ing’’ power-law regions. The appearance of the scaling
gions is due to a change in the composite, transforming fr
a strongly coupled dipole system at the percolation thresh
into a randomly distributed, sparse configuration of nonin
acting dipoles for lower metal concentrations. In two dime
sions, a single dipole placed at the center of the coordin
system induces an electric field with intensityI dip(r ,u)
5g cos2u/r4, wherer 5ur u is the modulus of the radius vec
tor rÄ$x,y% andu is the angle between the field polarizatio
andr . To find the actual one-dipole field distributionPdip(I )
we consider the one-dipole intensityI dip(r ,u) over the
square lattice and then we count the ‘‘identical’’ magnitud
in the logarithm of the field-intensityI. The resultant curve
for the one-dipole field distribution@the solid line in Fig.
3~b!# should be compared with the field distribution obtain
from the Kirchhoff equations when there is only one me
bond in the center of the film. Both distributions match e
tremely well; it can be seen that our method captures e
the smallest effects in the distribution caused by the cos
term. A fit for the scaling region,Pdip(I );I 2a, gives the
same exponenta53/2 for differentp. Such universal scaling
was also obtained for fractals@27#, where the scaling indexa
was found to be close to 1.5 and explained by the vec
nature of the dipole fields. The same number fora can be
obtained through the integralPdip(I )5**d„I 2I dip(r )…dS,
where I dip(r );1/r 4, d is the Dirac delta function andS
represents the surface for integration. It is important to m
tion that the field distribution was obtained experimenta
by direct measurements of the local field intensities@28,29#.
It was found that LFDF is an exponential function wi
maximum field enhancement of the order of;50. This
strong decrease of the local-field intensity and the expon
tial shape of the distribution is explained by the destruct
interference which occurs when the field is collected fro
large ~compared to the particle sizes! areas@29#. When this
effect is incorporated into a theoretical consideration, go
agreement with experiment data is observed@29#.

V. LOCALIZATION AND HIGH-ORDER FIELD MOMENTS

One of the most important properties of metal-dielect
composites is the localization of the surface plasmons
Ref. @25#, the authors performed estimations for surface pl
mon localization, using the inverse participation ra
RIP5(( i

NuEi2E0u4)/(( i
NuEi2E0u2)25N21^I 2&/^I &2 @30#,

whereN5Ld is the total number of sites andEi is the elec-
tric field vector corresponding to thei th site. According to
Ref. @25#, RIP for extended plasmons should be size dep
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dent and characterized by a scale comparable to the siz
the system; if there is a tendency to localization, the cor
sponding exponent should decrease and, for strongly lo
ized fields, it should become zero. For various loss factork
the authors of@25# found thatRIP;L21.3 so that the field
moment ratio isR5^I 2&/^I &25RIP3Ld;L0.7. This result
leads to size-dependent field moments, which for largeL
should not be the case. Below we show that the earlier the
@4–8#, which is based on Eq.~1!, is indeed size independen
and we will support the conclusion on plasmon localizati
with the exact BE method. By investigating the scaling b
havior ofR we will also extract some important relationship
that describe the statistical properties of the local fields
semicontinuous metal films.

We first focus on the simplest case when there is o
one dipole in the entire space. For a single dipole it is e
to obtain the relation R5^I 2&/^I &2. 1

3 ¸1/2, where ¸
5I max/I min is the ratio of the maximum~which is close to
the dipole site! and minimum~away from the dipole! in the
field intensities. Because of the power-law dependenceI dip

;r 24, there is a size dependenceR. 1
3 ( l /a)25 1

3 L2, wherel
is the length scale of the space that is under considera
anda is the average particle size. The functionR(L) as cal-
culated for a single dipole in the center of the square mes
shown in Fig. 4~a!. The size dependence for the one-dipo
local-field moments is an expected result since with an
crease of the investigated volume the weight of the lo
magnitude fields becomes progressively larger. However,
practical applications, we are interested in systems with la
numbers of particles so that they can be viewed as ma
scopically homogeneous. We can write this condition asna

5( l /ja)d@1, or (aL/ja)d5pLd@1, wherep is the volume
fraction andja is the average distance between the me
particles. Now for a theory to be size independent@R(L)
;const# we must impose the homogeneity conditionL
@p21/d. In Fig. 4~a! we showR(L) corresponding to the
resonance casesd52 i and sm5 i 1k, with loss factork
50.01 and three different metal coveragesp50.5, 0.1, and
0.01. It is clearly seen that in the limitL@p21/d there is an
apparent transition from a size-dependent into a s
independent ratioR, as expected.

By investigating the dynamics of the field moment ratioR
we can also determine relationships between important
tistical quantities, such as the field correlation lengthje and
the field localization lengthj f . By the field correlation
length je , we mean the average distance between the fi
peaks, while their spatial extension we characterize with
field localization lengthj f @22#. For nonoverlapping peaks
one can find that R5N/(NeNF)5(je /j f)

d, where N
5( l /a)d5Ld is the total number of sites, andNe5( l /je)

d is
the total number of the field peaks, each one occupyingNF
5(j f /a)d sites. In general, forL@p21/d, we expectR to be
a function ofp ~but not ofL) andk; the same is true for the
statistical lengthje . To determine this dependence we ru
calculations for two loss factors,k50.1 andk50.01. As
illustrated in Fig. 4~b!, for both cases,R can be approximated
as
1-6
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R~k,p!5h~k!H Fu~p!2uS p2
1

2D Gp2t

1uS p2
1

2D ~12p!2tJ , ~13!

whereu is the step function. For the exponentt, we obtain a
value which is close to 2/3. Forp<0.5 andd52 this value
yields the following relationship for the field correlatio
length: je.j f p

21/3Ah(k)5j f(je /a)2/3Ah(k), where the
function h(k) increases whenk decreases. The analysis
the ratio je /j f shows that we have a stronger localizati
with a decrease of both surface coveragep and loss factork.
In the special case of a single dipole we haveR5(je /j f)

2

5 1
3 L2, which, combined withje5aL, yields for the field

localization lengthj f5aA3.
The localization of the local fields into ‘‘hot’’ spots can b

easily seen in Fig. 5, where we show~for different wave-
lengths! the spatial distribution for the local intensityI (r ),

FIG. 4. The ratio of the local-field momentsR5M4 /(M2)2. ~a!
R as a function of the lattice-sizeL ~the crossed squares represe
the data from BE calculations for a single dipole and the dashed
shows the analytical result!. ~b! R as a function of the metal filling
factor p, for two different values of the loss factork ~both values
satisfy the inequalityje!aL); the dashed lines represent a fit bas
on Eq.~13!.
05661
and for the fourth moment of the local fieldsI 2(r ). Note that
I 2(r ) is proportional to the local Raman scattering enhan
ment provided that Raman-active molecules cover the fi
@7#. As mentioned, the resonance condition for isolated sil
particles is satisfied at the wavelengthl'370 nm. In Fig. 5,
we see that the fluctuating local fields are well localized a
enhanced with the enhancement on the order of 104 for I (r )
and 109 for I 2(r ). The spatial separation of the local peaks
well as their absolute magnitudes increase with the incre
of l. All these results qualitatively agree with the previous
developed theory@4–8#.

Based on the localization of plasmons, the scaling the
predicts that there should be a power-law dependence fo
higher-order field moments

Mn5^uEun&/uE0un;E r~L!@a/j f~L!#2n2d

@L21k2#n/2
dL;k2n11,

~14!

wheren52,3,4, . . . , r(L) is the density of states,j f(L)
represents the average single mode localization length w
corresponds to eigenvalueL, and k is the loss factor@7#.
This functional dependence was checked earlier, using
approximate real space renormalization group method, wh
qualitative agreement was accomplished with Eq.~14!. How-
ever, since the renormalization procedure is not exact,
worth estimating the field moments with the exact B
method. To determine field momentsMn , we use the BE
procedure for the surface filling fractionp5pc and a loss
factor varying in the rangekP1 – 1023 (sd52 i , sm5 i

t
e

FIG. 5. The spatial distributions for the normalized local inte
sity I (x,y) and for the ‘‘local Raman enhancement factor’’I 2(x,y).
The distributions are calculated for three different wavelengthsl
50.370mm ~a!,~b!, l51 mm ~c!,~d!, and l55 mm ~e!,~f!. The
metal filling factor is chosen asp5pc , for all cases.
1-7
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1k). All points are fitted with a power-law function, a
shown in Fig. 6. ForM2 we obtained the exponentx251.0
60.1, which is close to what was predicted by the scal
theory. For the third and fourth moments, we obtain t
M3,4;k2x3,4, where the exponentsx3,4 are estimated asx3
51.760.1 and x452.460.2. These two exponents a
somewhat different from the value predicted from Eq.~14!:
x352 andx453.

The scaling solution given by Eq.~14! is based on the
assumption that the localization lengthj f(L) is finite for all
L and it does not scale with the size of the system. If
functionj f(L) has a pole, for example, atL50 ~note that in
the previous publications, we used the notationjA for this
case!, this can lead to a change in the scaling indices. T
minimum of the correlation lengthje at the percolation
threshold and the log-normal distribution resulting from t
strong coupling between the dipoles also suggest that aL
50 we can expect the localization-delocalization transit
@10,31#. To determine the functionj f(L) we solve the eigen-
value problem for the real partĤ8 of the Kirchhoff’s Hamil-
tonian Ĥ5Ĥ81 ikĤ9 in 2D. The eigenvalue problem wa
solved with MATHEMATICA software for lattice sizes up to
L550. In our calculations of the localization length we us
the inverse participation ratio so that for each eigenmodeCn

that satisfies the equationĤ8Cn5LnCn , the surface-
averaged localization length for thenth mode j f

(n) is
given by the relation j f

(n)5a$@( i , j
N uEn( i , j )u4#/

@( i , j
N uEn( i , j )u2#2%21/d, where we have used the relationshi

RIP5R/Ld5(NeNf)
215(a/j f)

d for Ne51 ~single mode!
andEn52“Cn . Results for the average localization leng
are shown in Fig. 7. This figure illustrates that all states
L50 are localized as predicted by the theory. The locali
tion lengthsj f

(n) are symmetrically distributed with respect
the zero eigenvalue and scales as a power lawj f(L)
;L2x ~this is shown in the log-log inset!. For the scaling
exponent we obtain a valuex50.1460.02 which leads to an
improved relation for the field moments in the formMn;
k2n(12x)11. The exponentsx3 andx4 are given now byx3

FIG. 6. High-order field momentsM2 , M3, and M4, as func-
tions of loss parameterk; the calculations were performed for 10
different realizations in each case, for a lattice with sizeL5120.
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51.5860.06 andx452.4460.08, which is in good agree
ment with those found in the simulations. We note that,
though the presence of delocalized states atL50 results in a
slight change of the critical exponents in Eq.~14!, all basic
conclusions of the previously developed scaling theory s
hold because the relative weight of the delocalized state
small.

The presence of nonlocalized states in random me
dielectric films was also found in Ref.@10#. While our results
are in qualitative agreement with@10#, it is difficult to com-
pare them quantitatively. This difficulty arises from the fa
that in calculations of the localization length, the authors
@10# rely on the gyration radius. However, for eigensta
consisting of two~or more! spatially separated peaks, th
gyration radius is characterized by the distance between
peaks rather than by the spatial sizes of individual pea
which can be much smaller than the peak separation. In c
trast, the inverse participation ratio used above character
the sizes of individual modes. We note that thus defin
quantityj f enters Eq.~14! and other formulas of the scalin
theory.

VI. DISCUSSION AND CONCLUSIONS

In this paper we introduced a numerical method that
refer to as block elimination. The BE method takes adv
tage of the block structure of the Kirchhoff HamiltonianĤ
and thus decreases the amount of numerical operations
memory required for solving the Kirchhoff equations f
square networks. Note that the method is exact as oppose
previously used numerical methods, most of which are
proximate. The results obtained show that the BE meth
reproduces well the known critical exponents and distrib
tion functions obtained by other methods. The BE verifi
the large enhancement of the local electric field predicted
the earlier theory@4–8#. Specifically, the BE results are i
good accord with the estimates following from the real spa
renormalization group.

In addition to suggesting an efficient numerical metho
we thoroughly examined the local-field distribution functio

FIG. 7. Localization lengthj f(L) as a function of the eigenval
uesL calculated for metal concentration equal to the percolat
thresholdpc . The log-log inset depicts the scaling region with a
exponentx'0.14.
1-8
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P(I ) for different metal filling factorsp and loss factorsk.
The important result here is that in the optical and infra
spectral range, the local electric field intensity is distribu
over an exponentially broad range; specifically, the funct
P(I ) can be characterized by the log-normal function. T
latter result, however, holds only in the close vicinity of t
percolation threshold and for light frequencies close or eq
to the surface plasmon resonance of individual metal p
ticles. For metal concentrations far away from the perco
tion region, a power-law behavior was found forP(I ). This
‘‘scaling’’ tail in the local-field distribution can be related t
the one-dipole distribution function. The BE method al
verifies the localization of plasmons predicted earlier by
scaling theory. The ensemble average high-order mom
for the local field have also been calculated. We fou
power-law exponents that are in qualitative accord with
scaling theory. With the introduction of corrections due to t
presence of extended eigenmodes in the KH we obta
very good agreement between theory and simulations.
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APPENDIX

In this appendix we outline the construction of the KH
terms of the bond conductivities. As we show in Sec. II, t
Kirchhoff equations in the quasistatic approximation prov
solutions for the field distribution in a composite mediu
We consider the construction of the matrix Eq.~4! for the
two-dimensional case~the three-dimensional procedure
analogous! and treat a metal-dielectric film as a square latt
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of size L. The field potentials in the sites of the lattice a
described by the vector$w i%, wherei 51,2, . . . ,L2. All sites
are connected by conducting bondss i , j , where the indexj
5$ i 21,i 11,i 1L,i 2L% includes all the nearest neighbo
for site i. Then we can rewrite Eq.~1! in the following form:

2
1

D
@s i ,i 11~w i 112w i !2s i ,i 21~w i2w i 21!#1E0x~s i ,i 11

2s i ,i 21!2
1

D
@s i ,i 1L~w i 1L2w i !2s i , j 2L~w i2w i 2L!#

1E0y~s i ,i 1L2s i ,i 2L!50, ~A1!

whereD5a51/L is the bond length and the pair (E0x ,E0y)
represents the components of the applied electric field.
can rewrite Eq.~A1! in a slightly different way:

hi ,i
( j j )w i 1( j 21)L1hi ,i 11

( j j ) w i 1( j 21)L111hi ,i 21
( j j ) w i 1( j 21)L21

1hi ,i
( j , j 11)w i 1 jL1hi ,i

( j 21,j )w i 1( j 22)L5Fi
( j ) , ~A2!

where if i 85 i 1( j 21)L andL, i 8,L22L the components
of matricesh( i j ) and vectorsF ( j ) can be written ashi ,i

( j j )

5s i 8,i 8111s i 8,i 8211s i 8,i 81L1s i 8,i 82L , hi ,i 11
( j j ) 5

2s i 8,i 811 , hi ,i 21
( j j ) 52s i 8,i 821 , hi ,i

( j , j 11)52s i 8,i 81L ,
hi ,i

( j 21,j )52s i 8,i 82L , and Fi
( j )52D@E0x(s i 8,i 811

2s i 8,i 821)1E0y(s i 8,i 81L2s i 8,i 82L)#. The elements in the
first and the last rows of matrixĤ in Eq. ~4!, however, must
be described in accordance with the boundary conditions
the parallel boundaries~zero on the bottom and unity on th
top! are used, thenhi , j

(11)5hi , j
(LL)5d i j ; for the periodic bound-

ary conditions, the matrix elements are described by relati
similar to Eq.~3!. As an example for the periodic bounda
conditions, we show the exact forms of the 434 matrices
h(11), h(12), andh(15):
h(11)51
s1,41s1,2

1s1,131s1,5

2s1,2 0 2s1,4

2s2,1

s2,31s2,1

1s2,141s2,6

2s2,3 0

0 2s3,2

s3,41s3,2

1s3,151s3,7

2s3,4

2s4,1 0 2s4,3

s4,11s4,3

1s4,161s4,8

2 , ~A3!

h(12)5S 2s1,5 0 0 0

0 2s2,6 0 0

0 0 2s3,7 0

0 0 0 2s4,8

D , h(15)5S 2s1,13 0 0 0

0 2s2,14 0 0

0 0 2s3,15 0

0 0 0 2s4,16

D , ~A4!

where for the bond conductivities we haves i , j5s j ,i . We should point out that for the periodic boundaries the matrixĤ has
rank L221, and in order for the system to have a solution, one of the site potentials must be grounded.
1-9
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