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Plasmon localization and local field distribution in metal-dielectric films

Dentcho A. Genov, Andrey K. Sarychev, and Vladimir M. Shalaev
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285
(Received 12 October 2002; published 15 May 2003

An exact and very efficient numerical method for calculating the effective conductivity and local-field
distributions in randonR-L-C networks is developed. Using this method, the local-field properties of random
metal-dielectric films are investigated in a wide spectral range and for a variety of metal concenpalidns
shown that for metal concentrations close to the percolation threspeigp() and frequencies close to the
resonance, the local-field intensity is characterized by a non-Gaussian, exponentially broad distribution. For
low and high metal concentrations a scaling region is formed that is due to the increasing number of nonin-
teracting dipoles. The local electric fields are studied in terms of characteristic length parameters. The roles of
both localized and extended eigenmodes in Kirchhoff's Hamiltonian are investigated.
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[. INTRODUCTION field distribution in metal-dielectric nanocomposites has
been restricted so far to mainly approximate methods, such
The last two decades were a time of immense improveas the real space renormalization grdlgSRG. To some
ment in our understanding of the optical properties of inho-extent, this was justified since the focus of those calculations
mogeneous medigl]. One of the important representatives was on the effective properties, such as the macroscopic con-
of such media is a metal-dielectric composite near the perductivity and dielectric permittivity. Many fast algorithms
colation threshold. Such nanostructured composite materialsere suggested for determining the effective conductivities;
are of significant interest because they can lead to dramatitiese include very efficient models, such as the Frank and
enhancement of optical responses in a broad spectral randepbb Y-V transformation[11], the exact numerical renor-
including the visible and infrared parts of the spectrum. Inmalization in a vicinity of the percolation threshditi2—14,
particular, percolation metal-dielectric films can be employedand the transfer matrix methdd5]. Unfortunately, none of
for surface-enhanced spectroscopy with unsurpassed sensiiese methods can be used for precise calculation of the
tivity and for developing optical elements, such as opticallocal-field distribution and a different approach is needed.
switches and efficient optical filters, with transparency win-The relaxation methoRM) was one of the first algorithms
dows that can be induced by local photomodification in theto give some insight into the field distributioi46]. This
composite films. method has the advantage of using the minimum possible
In the optical and infrared spectral ranges, the metal dimemory, which is proportional to the number of site%
electric permittivity has, typically, a negative real part, sowherel is the size of the system antlis the space dimen-
that metal particles can be viewed as inductance elementsonality. Fast Fourier acceleratigh?7] allows one to speed
with small losses R-L elements In accordance with this up the convergency of the iteration process for both two-
assumption, a metal-dielectric composite can be treated as &2D) and three-dimensiondBD) percolation systems. How-
R-L-C network, where theC elements stand for dielectric ever, the “critical slowing down” effect and the problem of
grains, which have a positive dielectric permittivity. Many stability (occurring when the imaginary part of the local con-
different approaches based on effective-medium theories ardlictivity takes both positive and negative valuesstrict the
various numerical models have been suggested to descriluse of this approach. Thus, the local-field statistics for per-
the optical nonlinearities of such systefi23. In particular, a  colation composites in the optical and infrared spectral
number of numerical simulations have been carried out byanges was not investigated until very recently, with direct
using the real space renormalization gr¢8p 8. A recently =~ numerical methods that do not involve aaypriori assump-
developed scaling theofyt—8] for the field fluctuations and tions. In their work, Zekri, Bouamrane, and Zekti8] sug-
high-order field moments predicts localization of the surfacegested a substitution method, which allows one to calculate
plasmons in percolation composites and strong enhancemetfite local-field distributions in percolation metal-dielectric
for the local field, resulting from the localization. Experi- composites in the optical range. However, results obtained
mental observationfs7,9] in accord with the theoretical pre- for the local-field intensity distribution functioB(l) (where
dictions show the existence of giant local fields, which canl =|E|?) appear to be rather surprising. Specifically, instead
be enhanced by a factor of 36or the linear response and of the theoretically predicted and experimentally observed
10%° and greater for the nonlinear response. A recent studgnhancement for the local field, the authors of R&8] ob-
[10] of the plasmon modes in metal-dielectric films givestained strong dissipation, so that the average field intensity
more insights into the problem. Thus, in R¢LO] it was  was even lower than the applied one. This contradiction with
found that for all systems studied the local fields are concenthe previous results for the local-field distribution and the
trated in nanometer sized areas, while some of the eigemecessity for a more accurate method was one of the moti-
states are not localized. vations for this work. We note that the high local fields play
Despite the progress, computer modeling of the electri@ crucial role in enhancement for nonlinear optical effects
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and thus it is important to verify this prediction by exact cretization the current conservation for lattice sigcquires
calculations. the following form:

In this paper we suggest a direct numerical method, which
we refer to as block eliminatiofBE). The BE method allows
calculations of effective parametefsuch as the conductiv-
ity, dielectric permittivity, eto. and, most importantly, the
local-field distribution in inhomogeneous media. In this workwhere ¢; is the field potential of sité. The summation is
we focus our attention on the local-field distributié¥®{(1) over the nearestto i) neighbor sitesj; oj;=o; are the
and compare results obtained by BE with those followingconductivities of bonds that connect neighbor sitemnd
from the RSRG, the relaxation method, and the Zekri-and E;; are the electromotive forces. The electromotive
Bouamrane-ZekiiZBZ) method. Specifically, we investigate forcesk;; are defined so thd;; =aE,, for the bond leaving
the properties of two-dimensional random metal-dielectricsite i in the +y direction, andg;; = —akE,, for the bond in
composites by modeling them as a square lattice with thehe —y direction; E;; is zero for thex bonds. Note thaE;;
lattice sizeL comprised of dielectric and metal bonds, with = —E;; .
conductivitiesoy ando,,, respectively. The probability of a Numerical solutions of the Kirchhoff equatiqd) in the
bond to have metallic conductivity {s(wherep is the metal case of large lattice sizes encounter immense difficulties and
concentration and the probability of dielectric conductivity require very large memory storage and high operational
is 1—p. In agreement with earlier theoretical predictions andspeed. A full set of the Kirchhoff equations for a square
experimental observatiorid—9], we obtain a “topology” of  lattice with sizel is comprised ofL? separate equations.
the local electric field characterized by sharp peaks that cafhis system of equations can be written in the matrix form
exceed the applied field by several orders of magnitude. The
field maxima are due to the effect of localization of the sur- H.®=F, 2
face plasmon modes in random filrfig. A full set of field
distribution functionsP(l) that gradually transform from
“one-dipole” field distribution to log-normal distribution are

calculated by using the BE method. {—ZjoiEi;} are vectors of siz&?, which represent the po-

The rest of this paper is organized as follows. In Sec. II,! = T ) ;
we describe the block elimination procedure and some basitéentlal and applied field at each site and bond. In the litera-

equations describing metal-dielectric composites. In Sec. [11turé, the matrix1 is called the Kirchhoff HamiltoniaitkKH)

we examine the accuracy of this method by calculating thénd it is shown to be similar to the Hamiltonian for the

critical behavior and the effective conductivities for someAnderson transition problem in quantum mechaf&g-9.

important cases. In Sec. IV, we study the local-field distribu-The Kirchhoff Hamiltonian is a sparse random matrix with

tion P(1) for different metal concentrations and conduc- ~ diagonal elements!;; =;o;; (where the summation is over

tivities o,. In Sec. V, using an approach based on the in_all_bond conductivitiesr;; that_ connect theth site with its

verse participation ratio, we find important relations for theneighbor$ and nonzero off-diagonal elemenit; = —or; .

field correlation lengtht,, average field localization length For @ detailed description of the KH, see the Appendix.

&, and average distance between metal partiéles The In principle, Eq.(2) can be solved directly kzy applying the

eigenvalue problem is solved here and effects due to thetandard Gaussian elimination to the matkx[19]. This

existence of extended states are investigated. Finally, in Seprocedure has a run time proportional+d.® and requires a

VI we discuss the results obtained and draw conclusions. memory space of the order af'. Simple estimations show
that direct Gaussian elimination cannot be applied for large
lattice sizesl. >40, because of the memory restrictions and

Il. BLOCK ELIMINATION METHOD long run times for all contemporary personal computers. For-

W ider th bl f a local-field distribution i tunately, the KH matrixd has a simple symmetrical structure

€ c?n5| er Itd('e lpro 'e;'rll ora OC(?' 1€ f'St” #t'on N that allows implementation of the block elimination proce-
hanoscale metal-dielectric films at and away from the Percog, o \hich can significantly reduce the operational time and
lation threshold, in the case when the wavelengtlof an memory.

incidenthl_ight is much larger than the mﬁtall gralin saze . In calculations, we can apply the periodic boundary con-
Under this condition, we Ean introduce the local potentialgisions for thex andy directions; alternatively, we can also
¢(r) and local currenf(r)=o(r)-[~ Ve(r) + Eol, where 5466 parallel ot-electrode-type boundaries. In the case of

E, is the applied field anar(r) is the local conductivity. In e periodic boundary conditions, we suppose that the sites
the quasistatic case considered, the problem of the potentig| o first row of thel X L lattice are connected to tHeth

distribution is reduced to the solution of the current conser—row’ whereas the sites of the first column are connected to

vation law V- j(r) =0, which leads to the Laplace equation ,q |ast column. Then the Kirchhoff equations for the first

V-{o(r)-[~Ve(r) +Eol;=0 for determining the poten- it in the first row, for example, have the following form:
tials. Now we discretize the above relation on a square lattice

so that the film, which is a binary composite of metal and
dielectric particles, can be represented through metal and di-
electric bonds connecting the lattice sites. Under such dis- —aEg)+ oy +1(e1—@L+1taEy)=0, (3

; aij(¢i— ¢j+ Ejj;)=0, 1)

whereH is a symmetrid.2x L2 matrix that depends on the
structure and composition of the lattic={¢;}, andF=

o (er1—e ) torder—@)to 2 (@1 — QL2 4+1
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where oy, is the conductivity of the bond connecting the yecqly with the whole matrixd. After the first step of this

first and the I‘?}St sites in the ﬁ”.;t rOW. quzz conductivity block elimination is completed the matri has the follow-
connects the first and second sites in the first i@yy,2_| ;1 ing form:

connects the first site of the first row and the first site of the
Lth row, o1, +; connects the first sites of the first and the
second rows, and the external fidlg is applied in the+y
direction. Note that ther;, andoq,2_, +; connections are 0 h*(22 R o h(25)
d_ue to the pe(iodic boundary conditions in thandy direc- N K32 (3 (39 0 ©
tions, respectively. '

In Eq. (3) we numerate the sites of thex L lattice “row 0 h() Q) K4S
by row,” from 1 (for the first site in the first rowto L? (for h2 o HGH RK*(65)
the last site in theLth row). Under this labeling the KH

matrix H acquires a block-type structure. As an example, forhere by the asterisk superscript we denote all blocks that

a system with siz¢ =5, the matrixH takes the following have changed in the elimination process. The two new block

block form: elementsh®®® and h(®? appeared due to the interactions of
hlD) K12 0 h®® the first row with the second and the fifth rows.

As a second step, we apply the above procedure for the

minor H{Y) of the matrixH™ (which now plays the role of

h*(ll) h*(lZ) 0 0 h*(15)

o O O

h(2) R K@) 0

A= 0 hG? K hEY o | (4 R); therefore we work again with al3< 3L matrix:
0 0 h(43) K44 RL(45)
h() o 0 h(54 [(55) h*(22) QK23 QK25
N N h@=| hG2 nG> o |, (7)
whereh(i) are L XL matrices with diagonal elemenkg/!) K62 o p*(s5)

=204+ (j-1)Lk [the summation is over the nearest neigh-
bors of the sité + (j — 1)L, which are located in thggth row, R A
1<i<L], while the diagonal matriceh®)=h(K(k#1)  Repeating witrh(® all operations we performed df"), we
connect thekth row with thelth row, and vice versa. The puth* (2 in the triangle form and eliminate(®? andh(®2).
matrices in the right upper and in the left bottom corners ofwe continue this procedure until the whole matfxs con-
the KH matrixH are due to the periodical boundary condi- verted into the triangular form with all elements below the
tions: they connect the top and the bottom rows and the firgdiagonal being zero. The backward substitution for a trian-
and the last columns. The explicit forms for the matrice8  gular matrix is straightforward; namely, we obtain first the
andh® are given in the Appendix. site potentials in thé th row (the fifth row, in our example

For large sized., the majority of the block'!) are zero  and then, by calculating the potentials, in the-(1)th row,
matrices and applying Gaussian elimination will be a veryand so on, until the potentials in all rows are obtained. The
inefficient way to solve the system E€). In fact, in a  total number of operations needed is estimated-a$, for
process of elimination of all block elements beltW? in  the described block elimination method, which is less than
the matrix Eq.(4), the only matrix elements that will change the number_® needed for Gaussian &U (for symmetric
are h(1), (12 K22 K19 and h(®), with two more ele- matrixe$ elimination[19]. The BE has operational speed of
ments appearing in the second and last rows. Thus, to elimthe same order of magnitude as in the transfer-matrix method
nate the first block column of the KH we can insteadfbf  [15] and the Zekri-Bouamrane-Zekri methfitB]. However,
work with the following 3% 3L block matrix: BE allows the calculation of the local fields, as opposed to
the Frank-Lobb method, and we believe that it is much easier
in numerical coding when compared to the ZBZ method.
AL=| h@D K@ g ’ (5) For each step of the BE procedure, we need to keep only

hGD o hGS L2 (the matrix h®) complex numbers in the operational
memory and_® on a hard disk. By using the hard drive we

. . .. do not significantly decrease the speed performance because

recall that in the considered example we choose, for simplic- . P) ! .3 .

ity, L=5. o_nly L Ioadmgs qu numbers are requwec_i, i.d.,’ addi-
Now to eliminate all elements below the diagonal in thefmonal_opera_tlons_ in total. l_\lote that the BE, like to_the Gauss-

) A ian elimination, is well suited for parallel computing.

first block column of matrih®) we apply a standard proce- e performed various tests to check the accuracy of the

dure [19], whereby, using the diagonal elements of blockgg aigorithm described above. First, the sum of the currents

matrix h*? as pivots, we transforrh*? into a triangle ma- i, each site was calculated and the average vall@ 4

trix h* (Y and simultaneously eliminate*? andh®Y. The  \yas found: this is low enough to claim that current conser-

elimination of the first column oh(®and correspondingl vation holds in the method. Our calculations, using the stan-

thus requires only.® simple arithmetical operations which is dard Gaussian eliminatiotfor small lattice sizesand the

to be compared with.® operations needed if we work di- relaxation methodfor the case of all positive conductivi-

h(AD K12 RK(E5)
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ties), for the effective conductivity and the local-field distri- 03
bution show full agreement with results obtained using the
block elimination procedure developed.

Ill. RESULTS FOR 2D PARALLEL AND L-TYPE 02 - .
LATTICES I
. . . . P(I)
In inhomogeneous media, such as metal-dielectric com-
posites, both the dielectric permittivig(r) and conductivity 0.1 ]
o(r)=—iwe(r)/4m depend on the position When the size

of the composite is much larger than the size of inhomoge-
neities, the effective conductivity, can be introduced. As

discussed above, we model the composite byRah-C 0.0 L= - - L
square lattice and then apply the BE method to find the field ) 10 -8 -6 -4 -2 0 6
potentials in all sites of the lattice. When the potential distri- log,(I)

bution is known we can calculate the effective conductivity:
FIG. 1. The local-field distributiorP(l) calculated with two

5 1 5 exact methods, the relaxation meth@iM) and block elimination
O'e| E0| :gf 0'(|')|E(|')| dr, 8 (BE). Results of calculations with the approximate, real space
renormalization grougdRSRQ are also shown. The ratio of the

whereE(r) and E, are the local and applied fields, respec- (rea) conductivities for metal and dielectric bonds is chosen as
tively (see, e.g.[2]). Tl 0g=10".

It is well known that the effective dc conductivity for a
two-component random mixturer(,> o) should vanish as
a power law, when the metal concentratpapproaches the
percolation thresholg,, i.e.,

cally we used 40000 realizations far=10;5000 realiza-
tions for L=20;1000 realizations foL =60; and 100 real-
izations forL=150. The data from our calculations were
fitted to Eq.(10) and y? analysis was applied to determine
T~ m(P— P, 9) the critical exponents. Thus we found thatr=0.96+0.03
andt=1.28+0.04. This result is in good agreement with the
wheret is the critical exponent, which has been calculatedestimates of Derrida and Vannimenus and Frank and Lobb,
and measured by many authors. In the 2D case, the criticdut somewhat lower than thér= 1.0 obtained by Sarychev
exponent is given by=1.28+0.03, according to Derrida and Vinogradov. Note that the valtiler=1.0 is expected for
and Vannimenufl5], andt=1.29+0.02, according to Frank sizesL>300 that are greater than those we used in our esti-
and Lobb[11]. The valuet=1.33+0.03 was found by Sary- mates.
chev and Vinogradoy13], who used the exact renormaliza-

tion group procedure and reached the lattice &ize500 in IV. LOCAL-FIELD DISTRIBUTION FUNCTION
their simulations. In all cases, the critical exponénvas ) o
calculated using finite-size scaling thedig0]. When the To further verify the accuracy of the block elimination

volume fractionp of the Conducting elements reaches themethOd, we eXpIICItIy tested the field distribution function,
percolation thresholgy, the correlation length increases as for the case when the conductivities are positive and real
é~(p—p.) ", wherev=4/3 is the critical exponent for the Numbersi.e., the dielectric permittivity is purely imaginary
correlation lengtt{2]. Because the correlation lengthde-  in this casg The local-field distribution functlo(LFDF)ZV\{e
termines the minimum size of the network, for which it canSampled in terms of log(l), wherel=(|E—Eq|/|Eo|)* is

be viewed as homogeneous, one expects that feg the  the local-field intensity fluctuation withEy|? being the in-
effective conductivity depends on the system sizeThe tensity of the applied field. If the bond conductivitieg and

finite-size scaling theorj20—23 predicts the following de- ¢m are positive, we can also apply the relaxation method
pendence: [17] and compare the results with those obtained with the BE

procedure. Such a comparison is presented in Fig. 1, where
oo(L)~L" (), (10)  we can see that both distributions are nearly the same, with
only minor deviations due to the differences in the calcula-
where the argumeny=_LY"(p—p.) depends on the system tion procedures resulting in different round-off errors, and
sizeL and on the proximity to the percolation threshpid. also due to nonsufficient relaxation times. In the same figure,
For a self-dual lattice, such as the square lattice consideretie local-field distribution obtained with the real space renor-
here, the percolation threshold is known exacfly=0.5.  malization group method is also shown. It exhibits an ex-
When calculations are carried out for p, there is no need tended tail toward small values of the intendifya fact that
for knowledge of the specific form of the functidrin Eq.  is observed for all distributions calculated with this method.
(10). Although the case of real positive values for the conduc-
We calculate the effective conductivitye(L) for differ-  tivities is of considerable interest, more important physical
ent sized.. In order to improve the statistics for each size problems arises when the metal conductivity is complex.
a number of distinct realizations were performed. Specifi-One special case corresponds to the surface plasmon reso-
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FIG. 2. Local-field distribution®(I) calculated for three differ-
ent loss factorsc=0.1, 0.01, and 0.001, using the BE and RSRG 10" ¢
methods. All distributions are obtained fpr=p;. E

. p=0.001 p=0.01 p=05

nance, which plays a crucial role in the optical and infrared 10°
spectral ranges for metal-dielectric composites. For the two-
dimensional case, this resonance for individual particles oc- 97! L
curs whenoy=~—o0,,, and it can be investigated using a P(1)
dimensionless set of conductivitieg;=—i and o,=i + «, = [
wherei is the imaginary unit ana is a small real “conduc- 10
tivity” that corresponds to the losses in the system. Recall

that in metal-dielectric films the conductivityo,,= 10
—iwe /4 is predominantly imaginary with a very small
real part{22]. In Fig. 2, we show the local-field distributions
calculated for three different values a&f, using both the
block elimination and the real space renormalization group(p)
procedures. All functions obtained by these two methods dif-
fer in shape and peak positions; however, taking into account FIG. 3. Local-field distributiond>(1) for silver-glass films:(a)
that the RSRG is indeed an approximate procedure, we cd@r A=370 nm and\=1 um at p=p; (b) for different metal
conclude that qualitatively it performs rather well for high filling factors p at A=370 nm; the dashed line corresponds to the
intensities. It is important to note that the local-field distri- @nalytically predicted single dipole distribution.

bution is non-Gaussian and has a form close to the log-

normal function: simulations based on the exact BE method. All these simu-
lations and experiments indicate the existence of large local-
1 ;{ [logyo(1) — (10gye(1)) ]2 fielq enhancement in percolation metal-dielectric films re-
P(l)= expg — 5 , (11 sulting from plasmon resonances.
Al\2m 2A In addition to the reference system witty=—i and o,

=i+ k, we also did LFDF calculations for a silver-on-glass
film using the Drude formula for the metal permittivigy, ,
given as

where(log,((1)) is the average value for the logarithm of the
local field intensityl andA is the standard deviation in terms
of log,¢(l). This approximation for the field distribution
seems to work sufficiently well around the average value gm(w)ng_(wp/w)Z/(lJrin/w), (12)
=(log,((1)). We note, however, that according to Rie#4],

where the current distribution was studied, Etf) probably  wheree,, is the contribution due to the interband transitions,
will fail for intensities | far from the logarithmic average o, is the plasma frequency, and,=1/7<w, is the relax-

In Fig. 2 we can also see thdbg; (1)) andA both increase ation rate. For silver, we used the following constants:

when k decreases. =5.0, wp=9.1 eV, andw,=0.021 eV[26]; for the glass
Distributions similar in shape to those shown in Fig. 2 substrate, we used;=2.2.
were obtained by Zekret al, and discussed ifl8,25. It In Fig. 3@ we show the local-field distribution for two

was found that all distributions were shifted significantly to- different wavelengths: one corresponding to the resonance of
ward smaller values of, which led the authors to the con- individual particles w=w,, occurring at oq~—on (A
clusion that there is no strong enhancement for the locat-370 nm) and another in the infrared part of the spectrum.
field. Such a conclusion contradicts earlier calculationsAgain, we observe very wide distributions whose width in-
[4-6,8, experimental observations,9], and the current creases with the wavelength and enhancement factors that
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reach values of the order of 10°. We note that the log- dent and characterized by a scale comparable to the size of
normal approximation Eq11) does not hold for frequencies the system; if there is a tendency to localization, the corre-
shifted away from the resonance. Changes in the shape of tR@onding exponent should decrease and, for strongly local-
LFDF are also observed when the surface metal coveragged fields, it should become zero. For various loss factors
deviates from the percolation threshold value. This effect ishe authors of25] found thatR,;p~L "> so that the field
shown in Fig. 8b) where we have plotted the field distribu- moment ratio isR=(12)/(1Y2=R;px LI~L". This result

tion for three different metal concentratiops=0.5, O.Ql, leads to size-dependent field moments, which for large
and 0.001 at the resonanke= 370 nm. The case of a single gnoyId not be the case. Below we show that the earlier theory
meta! bond(dipole) pqsmoned at the center of the film is [4—8], which is based on EqY), is indeed size independent
also included. There is an apparent transition from the logz 4 \ve will support the conclusion on plasmon localization

.nor”mal (for |;3=|OC) LFDF iprtlo distributions thfattr?ave “lgcal— with the exact BE method. By investigating the scaling be-
NG’ powWer-iaw regions. -1he appearance of Ine scaling rey,,, 5 ofR we will also extract some important relationships
gions is due to a change in the composite, transforming fro

a strongly coupled dipole system at the percolation thresholt at .desc.ribe the statis_tical properties of the local fields in
into a randomly distributed, sparse configuration of nonimer_semlcor_ltlnuous metal fllms. :
We first focus on the simplest case when there is only

acting dipoles for lower metal concentrations. In two dimen- inole in th . ale dinole it i
sions, a single dipole placed at the center of the coordinat@"€ diPole in the entire space. For a single dipole it is easy

system induces an electric field with intensity;,(r,6)  © obtain  the relation R:<|2>/<!>2:%"1_/2’ where

= y co2alr®, wherer =|r| is the modulus of the radius vec- = !max/Imin IS the ratio of the maximungwhich is close to

tor r={x,y} and @ is the angle between the field polarization the dipole sit¢ and minimum(away from the dipolgin the
andr. To find the actual one-dipole field distributidhy;,(1) ~ field intensities. Because of the power-law dependdgge

we consider the one-dipole intensity,(r,6) over the ~T * thereis asize dependenRe-3(1/a)*=3L? wherel
square lattice and then we count the “identical” magnitudess the length scale of the space that is under consideration
in the logarithm of the field-intensity. The resultant curve anda is the average particle size. The functiB(L) as cal-

for the one-dipole field distributiofithe solid line in Fig. culated for a single dipole in the center of the square mesh is
3(b)] should be compared with the field distribution obtainedshown in Fig. 4a). The size dependence for the one-dipole
from the Kirchhoff equations when there is only one metallocal-field moments is an expected result since with an in-
bond in the center of the film. Both distributions match ex-crease of the investigated volume the weight of the low-
tremely well; it can be seen that our method captures evemagnitude fields becomes progressively larger. However, for
the smallest effects in the distribution caused by the cosingractical applications, we are interested in systems with large
term. A fit for the scaling regionPgp(1)~1"¢ gives the  numbers of particles so that they can be viewed as macro-
same exponent = 3/2 for differentp. Such universal scaling  scopically homogeneous. We can write this conditiomgs
was also obtained for fractdl&7], where the scaling index =(1/¢,)9>1, or (aL/&,)%=pL9>1, wherep is the volume

\rlwv:ti rfe?li)?(iht: (g)igo?el:o;ZI(;cs) #ﬁeaggmegﬂﬁmﬁgr%ctgﬁ gsCtofraction andé, is the average distance between the metal
. S particles. Now for a theory to be size independgR{L)
obtained through the integray;o(1)=JJ (1 =14ip(r))dS, ~consi we must impose the homogeneity conditidn

Whereldip(r)~1/r4, o is the Dirac delta function an®  _ 1 . )
represents the surface for integration. It is important to men—>p - In Fig. 4a) we showR(L) corresponding fo the

tion that the field distribution was obtained experimentallyreson‘r’mce caseq= 1 and oy =i+ «, with loss factorx
by direct measurements of the local field intensife8,2g.  — 0-01 and three different metal C‘?V?ragﬁig'& 0.1, and
It was found that LFDF is an exponential function with 0-01. Itis clearly seen that in the limit>p~ ™" there is an
maximum field enhancement of the order of50. This apparent transition from a size-dependent into a size-
strong decrease of the local-field intensity and the exponerifdependent rati®, as expected. _ _
tial shape of the distribution is explained by the destructive BY investigating the dynamics of the field moment rafio
interference which occurs when the field is collected fromwe can also determine relationships between important sta-
large (compared to the particle siZeareas[29]. When this tistical quantities, such as the field correlation lengtrand
effect is incorporated into a theoretical consideration, goodhe field localization lengthé;. By the field correlation
agreement with experiment data is obser{/24. length &., we mean the average distance between the field
peaks, while their spatial extension we characterize with the
field localization lengthé; [22]. For nonoverlapping peaks,
one can find thatR=N/(NNg)=(&./&)9% where N

One of the most important properties of metal-dielectric=(1/a)4=L¢ is the total number of sites, amd,= (I/£.)? is
composites is the localization of the surface plasmons. Iithe total number of the field peaks, each one occupipg
Ref.[25], the authors performed estimations for surface plas= (¢;/a)¢ sites. In general, fot>p~*d we expecR to be
mon localization, using the inverse participation ratioa function ofp (but not ofL) and«; the same is true for the
Rip=(ZNE—Eo| Y/ (N Ei—Eol?)?=N"%12)/(1)?> [30], statistical lengthé,. To determine this dependence we run
whereN=L9 is the total number of sites arf| is the elec- calculations for two loss factorss=0.1 and«x=0.01. As
tric field vector corresponding to thieh site. According to illustrated in Fig. 4b), for both casesR can be approximated
Ref.[25], R|p for extended plasmons should be size depenas

V. LOCALIZATION AND HIGH-ORDER FIELD MOMENTS
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E w»,w" 3 e 3.0x10°
10° b one dipole “ 4
R(L) I E p=0.01
10 E = ‘. L] [] - "= aga ] E
= p:O.].
10k T et p=05 3
0
10 ' L
10" 10
@) L
10* b ¢ I
R(p) T £=0.01 o
10 - - . 5 FIG. 5. The spatial distributions for the normalized local inten-
~ Tl e ',.«' 1 sity I (x,y) and for the “local Raman enhancement factbf(x,y).
1 The distributions are calculated for three different wavelengths:
~0 1. . =0.370um (a),(b), A\=1 um (c),(d), andA=5 um (e),(f). The
fe=4. Soemt metal filling factor is chosen as=p., for all cases.

100 b b L L Ly and for the fourth moment of the local fielt)&(r). Note that
(b) -0.1 0.1 0.3 0}')5 0.7 0.9 L1 12(r) is proportional to the local Raman scattering enhance-
ment provided that Raman-active molecules cover the film
FIG. 4. The ratio of the local-field momer®=M ,/(M,)2. (a) [7]. As mentioned, the resonance condition for isolated silver
R as a function of the lattice-size (the crossed squares represent particles is satisfied at the wavelengtk 370 nm. In Fig. 5,
the data from BE calculations for a single dipole and the dashed lingve see that the fluctuating local fields are well localized and
shows the analytical resiult(b) R as a function of the metal filing enhanced with the enhancement on the order &ffa0l (r)
factor p, for two different values of the loss factar (both values  and 10 for 1%(r). The spatial separation of the local peaks as
satisfy the inequalit¢.<al); the dashed lines represent a fit basedwell as their absolute magnitudes increase with the increase
on Eq.(13. of \. All these results qualitatively agree with the previously
developed theory4-8§|.
Based on the localization of plasmons, the scaling theory
0(p)— 9( D—E) } pr predicts that there should be a power-law dependence for the
higher-order field moments

R(K,IO)=77(K)[

1
+6 p_E)(l_p)_T]: (13) Ala/ A 2n—d
M= (e | Eo S —an
whered is the step function. For the exponentwe obtain a (14)
value which is close to 2/3. F@r<0.5 andd=2 this value
yields the following relationship for the field correlation wheren=2,3,4..., p(A) is the density of statesi;(A)

length: &~&p~13\n(k)=&(&/a)?3n(x), where the represents the average single mode localization length which
function n(«) increases whem decreases. The analysis of corresponds to eigenvaluk, and « is the loss factof7].
the ratio é./¢; shows that we have a stronger localization This functional dependence was checked earlier, using the
with a decrease of both surface coverpgind loss factok.  approximate real space renormalization group method, where
In the special case of a single dipole we hd¥e (£./£;)?  qualitative agreement was accomplished with @d). How-
=3L2, which, combined withé,=al, yields for the field ever, since the renormalization procedure is not exact, it is
localization lengthé;=a /3. worth estimating the field moments with the exact BE
The localization of the local fields into “hot” spots can be method. To determine field momeni4,, we use the BE
easily seen in Fig. 5, where we shdfor different wave- procedure for the surface filling fractiop=p. and a loss
lengths the spatial distribution for the local intensityr), factor varying in the rangece 1-10 3 (oq=—i, op=i
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3 25 Logiof€£(N) ]
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n 4 . 3
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10° F : . R . ]
1 e - + + L + A
10 3 . -10-7.5-5-2.5 2.5 5 7.5 10
0 [ RN | | NN i
10 107 1072 107! 10° FIG. 7. Localization lengtlg;(A) as a function of the eigenval-
P ues A calculated for metal concentration equal to the percolation

thresholdp, . The log-log inset depicts the scaling region with an
FIG. 6. High-order field moment®!,, M3, andM,, as func-  exponenty~0.14.

tions of loss parametet; the calculations were performed for 100

different realizations in each case, for a lattice with dize120. . L.
=1.58+0.06 andx,=2.44+0.08, which is in good agree-

ment with those found in the simulations. We note that, al-
though the presence of delocalized states atO results in a
slight change of the critical exponents in EG4), all basic

Yonclusions of the previously developed scaling theory still

theory. '_:Sr the third and fourth moments, we obtain thathold because the relative weight of the delocalized states is
M3 4~ k734 where the exponents; 4, are estimated as; small

=1.7x0.1 3”0' X4=2.4:0.2. These two _exponents .are The presence of nonlocalized states in random metal-
somewhat different from the value predicted from Ety): dielectric films was also found in RfLO]. While our results
X3=2 andx4:3. . . . are in qualitative agreement wifA0], it is difficult to com-

The spallng solution given by Eq14) IS ba}sgd on the pare them quantitatively. This difficulty arises from the fact
assumpnon that the Iocallzgtlon Iengr(A) s finite for all that in calculations of the localization length, the authors of
A anld it does not scale with the size of the system. .If the[lo] rely on the gyration radius. However, for eigenstates
functlongf(A) has_ap_ole, for example, at=0 (r_10te that_'” consisting of two(or more spatially separated peaks, the
the previous publications, we used the notationfor this 4y ration radius is characterized by the distance between the
casg, this can lead to a change in the scaling indices. Theseays rather than by the spatial sizes of individual peaks,
minimum of the correlation lengtig, at the percolation \ynich can be much smaller than the peak separation. In con-
threshold and the log-normal distribution resulting from thegaqt the inverse participation ratio used above characterizes
strong coupling between the dipoles also suggest that at he sizes of individual modes. We note that thus defined

=0 we can expect the localization-delocalization transitionquamitygf enters Eq(14) and other formulas of the scaling
[10,31. To determine the functio&;(A) we solve the eigen- theory.

value problem for the real paFt’ of the Kirchhoff’s Hamil-

tonian H=H’+ixH"” in 2D. The eigenvalue problem was
solved with MATHEMATICA software for lattice sizes up to VI. DISCUSSION AND CONCLUSIONS
L=50. In our calculations of the localization length we used
the inverse participation ratio so that for each eigenmdige

that satisfies the equatiom’W,=A,¥,, the surface-

a}’eraged localization 'e”ch for(n)theth rSode _f%n) 4'5 and thus decreases the amount of numerical operations and
given by the relation & :a{[zi,J|En('*1_)| 1" memory required for solving the Kirchhoff equations for
[=01En(i,))1?1% 4, where we have used the relationships square networks. Note that the method is exact as opposed to
Rip=R/L%=(NNy) ~*=(a/é;)? for No=1 (single mode  previously used numerical methods, most of which are ap-
andE,=— VW, . Results for the average localization length proximate. The results obtained show that the BE method
are shown in Flg 7. This figure illustrates that all states bu‘feproduces well the known critical exponents and distribu-
A =0 are localized as predicted by the theory. The localization functions obtained by other methods. The BE verifies
tion lengthsé{™ are symmetrically distributed with respect to the large enhancement of the local electric field predicted by
the zero eigenvalue and scales as a power BgA) the earlier theon4—8]. Specifically, the BE results are in
~A "X (this is shown in the log-log insetFor the scaling good accord with the estimates following from the real space
exponent we obtain a valye=0.14+0.02 which leads to an renormalization group.

improved relation for the field moments in the forkh,~ In addition to suggesting an efficient numerical method,
k "I=X0*1 The exponents; andx, are given now byx;  we thoroughly examined the local-field distribution function

+ k). All points are fitted with a power-law function, as
shown in Fig. 6. FoiM, we obtained the exponew;=1.0

In this paper we introduced a numerical method that we
refer to as block elimination. The BE method takes advan-

tage of the block structure of the Kirchhoff Hamiltoni&h
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P(1) for different metal filling factorg and loss factors. of sizeL. The field potentials in the sites of the lattice are
The important result here is that in the optical and infrarecdescribed by the vectdiy;}, wherei=1,2, ... L% All sites
spectral range, the local electric field intensity is distributed®r® connected by conducting bondls; , where the index
over an exponentially broad range; specifically, the functior={i —Li+Li+Li- L} includes all the nearest neighbors
P(1) can be characterized by the log-normal function. Thefor sitei. Then we can rewrite Eq1) in the following form:
latter result, however, holds only in the close vicinity of the

percolation threshold and for light frequ_enc_ie_s close or equal_ Mo i1 @is1— @) =01 i—1(@i— @i 1) ]+ Eo T i 11

to the surface plasmon resonance of individual metal par- A" " ' ’

ticles. For metal concentrations far away from the percola-

tion region, a power-law behavior was found #¢l). This —aii-)— oL@ @) =0 L(@i—@i-1)]
“scaling” tail in the local-field distribution can be related to ' AT '
the one-dipole distribution function. The BE method also +Eoy(0y i~ 01i-1)=0, (A1)

verifies the localization of plasmons predicted earlier by the
scaling theory. The ensemble average high-order momentghereA =a=1/L is the bond length and the pai ¢ , Eoy)
for the local field have also been calculated. We foundrepresents the components of the applied electric field. We

power-law exponents that are in qualitative accord with thecan rewrite Eq(A1) in a slightly different way:
scaling theory. With the introduction of corrections due to the

presence of extended eigenmodes in the KH we obtained h(Dg;, 1y +h%) oy —1y 1 +h3 101y -1
very good agreement between theory and simulations. Q+D) (-1j) )
o et e oo =FY, (A2)
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where ifi’=i+(j—1)L andL<i’<L“—L the components
This work was supported by Battelle under Contract No.of matricesh!’) and vectorsF) can be written as_hi(‘JiJ)
DAAD19-02-D-0001, NASA(Contract No. NCC-1-01049  =¢, .1+ 0y 11 101 s+ 01 10 Ly h(i) | =
ARO (Contract No. DAAD19-01-1-0682 and NSF(Con-  _ ., hiD =, Uit
tract No. E SC-0210445 1 R ) o
' hii “=—oii-L, and Fi'=—A[Eox(oirir+1
_U'i’,i’—l)+EOy(Ui’,i’+L_Ui’,i'—L)]- The elements in the
APPENDIX fi a
irst and the last rows of matril in Eq. (4), however, must
In this appendix we outline the construction of the KH in be described in accordance with the boundary conditions. If
terms of the bond conductivities. As we show in Sec. Il, thethe parallel bounda[ile(zer(L)Lon the bottom and unity on the
Kirchhoff equations in the quasistatic approximation providetop) are used, theh{;"=h{."= 5, ; for the periodic bound-
solutions for the field distribution in a composite medium. ary conditions, the matrix elements are described by relations
We consider the construction of the matrix Ed) for the  similar to Eq.(3). As an example for the periodic boundary
two-dimensional caséthe three-dimensional procedure is conditions, we show the exact forms of the<4 matrices
analogousand treat a metal-dielectric film as a square latticeh®™?, h(*?, andh(9):

014t 012
' ' —012 0 — 014
to113t 015
023t 021
— 021 —023 0
(11) t0214T 026
h(1D)—= , (A3)
0 - 0341032 o
— 032 — 034
to315t 037
04117043
— 041 0 T 043
t 04167 048
_0'115 0 0 0 _0']”13 0 O 0
- 0 0 0 - 0 0
h2_ T26 h(15)— 72,14 (Ad)
0 0 _0'3’7 0 ’ O 0 _0'3‘15 O ’
0 0 0 _0-4,8 O O 0 _0-4,16

where for the bond conductivities we hawg;=o; ;. We should point out that for the periodic boundaries the madrixas
rank L2—1, and in order for the system to have a solution, one of the site potentials must be grounded.
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